Hyperarticulation as a Signal of Stance

Valerie Freeman
University of Washington
December 13, 2013
Study Overview

• Analyzes a political talk show for evidence that speakers use hyperarticulation to signal their stances

• Proposes that this use of hyperarticulation overrides the discourse convention of reducing the pronunciation of given information
New vs. Given

• Cooperative Principle (Grice 1967):
 – speakers are expected to give true, concise, and relevant information

• Given-New Contract (Clark & Haviland 1977:4):
 – “the speaker … agrees to convey information he thinks the listener already knows as given information and to convey information he thinks the listener doesn’t yet know as new information.”
New

• First introduced into discourse or reintroduced after extended interruption

• Hyperarticulated:
 • Exaggerated pronunciation, less coarticulation
 • Slower rate, longer durations, heavier stress
 • Expanded vowel space, pitch range
 – Increase comprehension, avoid confusion
 – Signal something new
Given

• Already “on the counter” (Prince 1981), activated in speakers’ discourse models

• Reduced articulation (hypoarticulation):
 – No extra effort needed to avoid confusion
 • Faster rate, shorter durations
 • Contracted vowel space, pitch range

• **Novelty**: dimension of new vs. given
 • Label items for analysis as new or given info
Hyperarticulation

• Other uses:
 • Emphasis, contrast
 • Focus, topic marking
 • Clarification, error correction, avoiding confusion
 • Affective, emotional expression

• Possible use:
 – Signal speaker stance
Stance / Evaluation

– Attitudinal stance: subjective attitudes, judgments, evaluations
– Evaluation: “the expression of the [speaker’s]… attitude or stance towards, viewpoint on, or feelings about the entities or propositions that he or she is talking about” (Hunston & Thompson 2000:5).

• *Evaluation*: dimension of stance-expression
 • Identify presence or absence of stance
Hypotheses

• H1: There is an effect for Novelty
 – New information will be hyperarticulated
• H2: There is an effect for Evaluation
 – Stance-expressing tokens will be hyperarticulated compared to neutral tokens
• H3: There is a Novelty-Evaluation interaction
 – Evaluation will have a greater effect overall
 – Individual variation also expected
Data Set

– Episode of *Tucker* randomly selected from corpus of political talk shows
– All 6 segments of conversation analyzed
– 5 male speakers from various dialect regions
– *Concepts* identified for analysis:
 • Content word/phrase with three or more repetitions (*tokens*) said by same speaker in one conversational segment
 • Plus references to the concept (e.g. pronouns, synonyms, truncations)
Example Concept

<table>
<thead>
<tr>
<th>Concept: “the war in Iraq”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokens analyzed: repetitions of “war”</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>“the war in Iraq”</td>
</tr>
<tr>
<td>“the war in Iraq”</td>
</tr>
<tr>
<td>“the war”</td>
</tr>
<tr>
<td>“a war”</td>
</tr>
<tr>
<td>“this”</td>
</tr>
<tr>
<td>“this critical issue of Iraq”</td>
</tr>
<tr>
<td>“the war”</td>
</tr>
<tr>
<td>“it”</td>
</tr>
</tbody>
</table>
Content Analysis

- One point for each act regarding the concept that signals a stance
- Divide total points by number of tokens
- Code *concepts* with scores ≥ 2.00 as “stance,” those below as “control”
 - Cutoff determined by frequency distribution of all concepts from the episode
 - Distribution was nearly normal with mean at 1.92
Speaker Acts

a. Speaker works to keep concept in play
 – Introduces, returns to topic, repeats when interrupted, changes topic: “Let’s talk about *this*”
 – Asks to be heard: “Look / Listen, Let me say this”

b. Expresses overt opinion about concept
 – “I think / believe, The way I see it, It’s clear to me”

c. Uses loaded descriptions, modifiers of concept
 – “Obviously, ridiculous, important, impressive”
 – “It turned my stomach”
Speaker Acts

d. Establishes credibility to support opinion
 - Cites experts: “Polls show, Most Americans agree, If you look at the study, That’s a fact, We all know”
 - Presents self as expert / authority: “I was there”

e. Attempts to persuade, gives recommendations
 - “Think of it this way, You have to agree”
 - “Hopefully; What they should do is”

f. Agrees / disagrees with another speaker
 - “I agree / disagree, Not at all, Absolutely, Right”
Marking Novelty

• New:
 – First introduction to the discourse
 – Reintroduction after 5+ turns over 60+ seconds

• Given:
 – all other tokens

• Combination of labels for each token:
 – stance or control + new or given
Data Set

<table>
<thead>
<tr>
<th>Type</th>
<th>Concepts</th>
<th>Tokens</th>
<th>Vowels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Given</td>
<td>New</td>
</tr>
<tr>
<td>Control</td>
<td>33</td>
<td>82</td>
<td>27</td>
</tr>
<tr>
<td>Stance</td>
<td>32</td>
<td>73</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>155</td>
<td>63</td>
</tr>
</tbody>
</table>
Data Set

• Good balance
 – Even distribution by vowel height, tenseness, token length, lexical frequency (factors known to affect hyperarticulation measures)
 – BUT: Frequency of token types varies by speaker
Measures

• Lengthening
 – Speech Rate of tokens (syllables/sec)
 – Duration of stressed vowels in tokens (ms)
• Pitch
 – Normalized pitch difference: amount a pitch deviates from speaker’s mean pitch (z-score)
 • Pitch of each stressed vowel
 • Speaker mean pitch (z-score normalized mean of stressed vowel pitches)
 • Mean pitch differences for each token type
Measures: Vowel Space

- Vowel space (F1 x F2)
 - Euclidean distance between combinations of new/given and stance/control
 - Only analyzed vowel qualities with all four type combinations by same speaker (62 vowels total)
 - F1, F2 at midpoint (Hz) averaged within token type, within vowel quality, within speaker
 - Euclidean distances between token type means
Vowel Space Conceptual Diagram

- Nodes: mean F1xF2 of vowel quality with type combo (new/given + stance/control)
- Lines: Euclidean distances, representing effect of one dimension (Novelty/Evaluation) on tokens of one level of the other
Results: Lengthening

• Significant main effects (three-way ANOVAs)
 – Speech Rate (syllables/sec, p < 0.01):
 • Evaluation: *Stance* slower than *Control*
 • Novelty: *New* slower than *Given*
 • Speaker
 • Evaluation/Speaker interaction
 – Stressed Vowel Duration (ms, p < 0.01)
 • Evaluation: *Stance* slower than *Control*
 • Speaker
 • Evaluation/Speaker interaction
• Novelty-Evaluation interaction: non-significant trend in the expected direction
Results: Pitch

• No significant group effects
• Wide individual variation
 – Different strategies?
Results: Vowel Space

• Expected pattern
 • Evaluation has greater effect than Novelty overall
 • Evaluation affects *new* more than *given* tokens
 • Novelty affects *stance* more than *control* tokens

• T-tests: only Nov(ctrl) and Eval(new) significantly different
Conclusions

• Support for all three hypotheses:
 – H1: There is an effect for Novelty
 • Speech Rate: New information hyperarticulated
 – H2: There is an effect for Evaluation
 • Rate & Duration: Stance-expressing tokens hyperarticulated compared to neutral tokens
 – H3: There is a Novelty-Evaluation interaction
 • Speech Rate (& Vowel Space): Evaluation has greater effect than Novelty overall
 • Individual variation strong for Pitch differences
Future Work

• Larger corpus (ATAROS)
 – Stance-dense interactions
 – Increasing levels of engagement
 – Control dialect region (PNW)
 – Control dyad makeup (gender, age, familiarity)

• Improved phonetic measures
 – More sophisticated vowel space, pitch measures
 – Phrase-level analysis

• Finer stance distinctions
Acknowledgements

Broadcast audio used with permission from Linguistic Data Consortium (LDC) corpora produced for the DARPA Global Autonomous Language Exploitation (GALE) project. Transcript and annotation data are from the Linguistic Cues of Roles in Conversational Exchanges (LiCORICE) Project, funded by NSF grant IIS-0811210, and by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), Contract No. W911NF-09-C-0131. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI or the U.S. Government.

This report is based on work conducted for a master’s thesis titled “Using acoustic measures of hyperarticulation to quantify novelty and evaluation in a corpus of political talk shows,” filed at the University of Washington, August 2010. Manuscript in preparation for Journal of Phonetics.

Portions of this research were presented at the 160th Meeting of the Acoustical Society of America (ASA) in Cancun, Mexico, November 15-19, 2010, and at the 26th Northwest Linguistics Conference (NWLC) in Burnaby, BC, Canada, May 8-9, 2010.

Thanks to Richard Wright, Betsy Evans, Emily Bender, Brian Hutchinson, Meghan Oxley, Dan McCloy, Sarala Puthuval, Amie De Jong, Russ Hugo, and Mark Ellison.
References (Hyperarticulation)

References (Hyperarticulation)

References (Novelty, Stance)

